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Special lines of quasilattices: 1. The case of irreducible
quasilattices in two and three dimensions
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Department of Physics, Tohoku University, Sendai 980, Japan

Received 6 July 1990

Abstract. A general theory for special lines in quasilattices is developed. Using the theory,
we classify completely the speciat lines of the three Bravais classes of icosahedral quasilat-
tices in three dimensions and another three of n-gonal quasilattices in two dimensions,
where n=28, 10 and 12, We establish compatibility relationships between the classes of
special lines and those of special points for each of the six Bravais classes of quasilattices.

1. Introduction

In the one-electron theory of a periodic lattice, the energy band E(k} is fundamentally
important. It is usually displayed along high-symmetry directions in the reciprocal
space (Koster 1957), It is stationary at high-symmetry points. We shall call these
directions (or points) special lines (or points). They are generally called, together with
mirror planes, special manifolds. The special manifolds of a periodic lattice in real
space are called Wyckoff positions and are important in crystallography (Hahn 1987).

It has also been revealed that the electronic wavefunctions of a quasicrystal have
rich structures in the reciprocal space, that is we have observed a quasi-dispersion
relationship, whose change in the reciprocal space is well understood by introducing
special points (Niizeki and Akamatsu 1990).

The real space structure of a quasicrystal is described by a quasilattice (QL), which
is obtained by the cut-and-projection method from a periodic lattice in higher
dimensions (Katz and Duneau 1986, Janssen 1988). The special points of a QL in
the real space are useful in the investigation of the local structures of the QL (Niizeki
1989a).

In the case of a periodic lattice, special points or lines are located on special
positions of the Wigner-Seitz cell (or the Brillouin zone in the reciprocal space (Koster
1957)). Therefore, enumeration of them and determination of their point groups are
not so difficult. This, however, is not the case for oLs because their special manifolds
are related to those of a periodic lattice with dimensions higher than three; we cannot
visualize a higher-dimensional lattice. More precisely, it is not too difficult to determine
the point group of a given special manifold but without a systematic method it is
difficult to enumerate them without omission.

The special points of important QLs in two and three dimensions have been
completely classified and listed (Niizeki 1989a, b, 1990a); the classification of special
points in a QL is reduced to that of a higher-dimensional lattice. The situation is more
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complicated in the case of special lines as will be shown later, The purpose of the
present paper is to establish a systematic method for enumerating them and to present
a complete list of them for important QLs in two and three dimensions.

In section 2, we summarize the properties of irreducible QLs in two and three
dimensions (see, for example, Janssen 1988). In section 3, the special lines and planes
of a point group are introduced. We develop, in section 4, a systematic method for
enumerating special lines of a QL. In sections 5 and 6, we classify the special lines of
irreducible QLs in three and two dimensions, respectively. In section 7, we investigate
the interplay between a special line of a QL and its local structures. The final section,
section 8, is devoted to discussions.

2. Irreducible quasilattices in two and three dimensions

The basis vectors ¢, i=1,..., D, of a gL in d-dimensions are linearly independent
over Z, where D> d. Let G be the point group of the QL; G acts on the d-dimensional
Euclidean space E,. Then ¢ € E, are transformed linearly by any ¢ € G among them-
selves with integer coefficients. We consider only the case where E, is irreducible with
respect to G. Then D is a multiple of d. The case where D= 2d is important. If we
restrict our considerations to 20 and 3D QLs, this condition is satisfied only when
G =Dg(8m), D,o(10mm) and D,,(12mm)} in two dimensions and G =Y,,(53m) in three
dimensions. We shall confine our arguments to these cases only, i.e. the octagonal,
decagonal and dodecagonal Q. in two dimensions and icosahedral ones in three
dimensions.

There is oniy one Bravais class, Pnmm, of 2b QLs with the n-gonai point symmetry
for n =8, 10 or 12. On the other hand, there are three Bravais classes, P33m, F33m
and I53m, of 3D QLs with icosahedral peint symmetry.

The set of vectors L={Zme;|n; ¢ Z} is called a pre-quasilattice (poL), which is a
dense set of point in E;; a oL is a discrete subset of L. L is considered to be an
additive group (a Z-module). L is left invariant by the action of G.

L and G can be iified up to a J-dimensionai pcrloulc iatiice L and iis poi
G. More precisely, there exists conjugate basis vectors e, i=1,..., D, such

(i) e! are vectors in another Euclidean space E} in d-dimensmns. .

(ii) é;=(e,e.)e Ep (=E,®E,), i=1,..., D, are the basis vectors of L.

(iii) The action of G onto Ep, is reducible into the action of G onto E, and that
of another point group G’ onto E};, where G, G’ and G are isomorphic to each other.

L is the projection of L onto E,. L' ={Z.me}| n; € Z}, the conjugate pQL to L, is the
projection of I onto E! %. There are one-to-one correspondences among L, L' and L
We shall call E; the real space and E; the conjugate space.

Many trinities of the form (7, T, 7y, which are associated with the trinity
(E;, E;, Ep), will appear; T’ is the conjugate to T. The case T =G or L has appeared
in a preceding paragraph.

ini group
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Let us introduce 2 quasi-space group ¢ a semidirect
$=G+ L={{o|l}|oceG,Ic L} %isadensesubgroup of the d-dimensional Euclidean
group in contrast to the ordinary space group. ¥ leaves L invariant. G and L is
embedded in 4; G={{o(0}{oce G} (= ¥) and L is the maximal Abelian subgroup of
%. 9§ is a member of the trinity (%, G @, G(= G*L)is an ordinary space group
associated with the periodic lattice L. It can be shown generally that every algebraic
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structure associated with one member of the trinity can be translated into those of the
other two (Katz and Duneau 1986).

A poL has a self-similarity; that is there exists an algebraic integer + such that
7L (={7l|1e L}) = L (in the case of the dodecagonal PoL in two dimensions; however,
a rotation through 7/12 must follow the scaling). The self-simitarity gives rise to some
arbitrariness in indexing a lattice vector of L (Elser 1985, Ostlund and Wright 1986,
see also Niizeki 198933,

Let I(=E,-n,-ei)EL. Then, the 1D subsPace D(Iy={xl|lxc R} is called a lattice
direction. Since I'= 7 {c L} is parallel to [, I defines the same lattice direction as D(I).
More generally, for any lattice direction D, D~ L is a submodule with two basis
vectors Iy and b; D L={n{ +n,l|n,, ne Z} (Katz and Duneau 1986}. This lattice
direction is denoted by D=14,/L,. D is a member of the trinity (D, D', D), where
D=1/l s a lattlce direction of L' and D is the lattice plane (not a direction) of L
spanned by 11 and 12

A line is called a lattice line (more precisely, a quasilattice line) if it passes at least
two lattice points. In fact, it passes an infinite number of lattice points because it is
parallel to a lattice direction, which is a special lattice line.

3. The special manifolds of a point group

Let H be a non-trivial 30 point group which fixes the origin of E;. [t is then called a
centring group if the origin is the only fixed point in E,. However, if H is a mirror
group, e.g. C,={E, oy}, the mirror plane is a fixed plane. The remaining case is the
one in which H is a polar group; in this case, there exists a fixed line, which is nothing
but the axis of the polar group. There are two series of polar point groups, i.e. C, and
C,. with n=2.

The fixed line of a polar subgroup of a point group G is called as a special line
{sL) of G. Two polar subgroups of G can have a common fixed line. Then, they are
suvgfoups of a maximal polar Si.ngi'Oup of G. nCCGi‘uiﬁgly, there exists a one-ip-one
correspondence between the set of all the sus of G and that of all the maximal polar
subgroups of G. If two maximal polar subgroups of G are conjugate in G, the
corresponding two sSLs are equivalent. The number of inequivalent sis is equal to the
number of the maximal polar subgroups which are not conjugate to each other. On
the other hand, the number of equivalent sLs whose point group H is given by |G|/{2|H]),
where [%| stands for the order of the group *; the factor 2 in the denominator is due
to the fact that an si is tranformed into itself by the inversion operation. A similar
conclusion is also derived for the case of special planes of G.

Let H be a polar subgroup of G and assume that there exists a mirror plane (a
special plane) of G such that it does not include the axis of H. Then, H and the mirror
generate a centring subgroup of G.

We assume ihat G is the point group of a Bravais lattice {oraroi) L. LetHbea
maximal polar subgroup of G and X the corresponding si of G. Then, there exists a
lattice vector I,€ L such that it is not parallel to X. It follows that I =X ol (e H} is
a parallel lattice vector to X. Therefore, every sL of L is parallel to a lattice direction.

We shall apply the present theory to the three icosahedral Bravais Qus, P53m, F53m
and 133m, The relevant point group Y,(53m) has three inequivalent sLs corresponding
to its three maximal polar subgroups, Cs,, C;, and C,. The three sis are denoted by
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A, A and X, respectively, which agree with the 5-, 3- and 2-fold axes of the icosahedron
constructed with twelve basis vectors, te, i=1,...,6, of P53m. The three lattice
directions [100000]/[011111}, [111000]/{000111] and [100100]/[001001] of P33m are
parallel to A, A and Z, respectively, where the index scheme in Niizeki (1989b) is used.

Y, has only one class of equivalent special planes corresponding to the fifteen
equivalent mirror planes.

It is an important property of the point group Y, that each of its three inequivalent
maximal polar subgroups has a companion mirror in Y,,, with which it generates Yy
this is easily confirmed for each case of Cs,, Cs, and C,,, separately. Oy, also has a
similar property.

The present consideration also applies to the case of point groups in two dimensions.
Note, however, that a mirror group in two dimensions is considered to be a polar
sLs corresponding to two inequivalent mirrors crossing with the angle 7/n; the two
mirrors generate D,. The two sLs are denoted by A and =,

D, is the point group of the 2p n-gonal pQL Prmm with n =8, 10 or 12. We assume
that A is parallel to a basis vector of Pnmm. Then, representatives of A and 2 are
indexed as [1000]/[0101] and [1100]/[0011] for n=8, [10000]/[01001] and
[010011/[00110] for n =10 and [1000]/[0201] and [11001/[0111] for n = 12, where the
index scheme in Niizeki (1990a) is used.

4. Special lines of a PoL

The main part of the theory in this section applies to both a periodic Bravais lattice
and that of a pgL, 50 that we will not distinguish between the two cases, if unnecessary.
The theory can be readily understood by frequent reference to the three cubic Bravais
lattices (Koster 1957).

4.1. General theory

We consider the case of a 3p lattice, L, whose point group is G. Let # be a non-trivial
subgroup of the space group & (=G« L) of L and assume that it has a fixed point.
Then # is a point group with respect to the fixed point. The fixed manifold X of #
is a special manifold (sm) of L or, more precisely, a special point, line or plane
depending on whether dim(X) is equal to 0,1 or 2, respectively. If 3¢ is the maximal
point group among those which are subgroups of % and leave X invariant, it is called
the point group of X. Let H be the ‘rotational part’ of #. Then, H is a subgroup of G
and H= 3% We shall sometimes identify # with H. Then, we will use the latter symbol,

Let a € % Then, X =aX (= {ax|x e X}) is an equivalent sm of L to & the point
group of X is given by F=a¥e", which is conjugate to % in % In particular, if
a={E|l} with I€ L, then X =1+X (={I+x|xeX}) is translationally equivalent to
X and % is ‘translationally equivalent’ to J; the rotational part is common between
% and ¥ Two equivalent sms usually have different orientations if they are not
translationally equivalent. In particular, two equivalent special points can have different
‘orientations’ because the relevant point groups can be ‘translationally inequivalent’.
The set of all the equivalent sm: form a class; the point group of the class is defined
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by the point group of a representative of the class. We will see that a lattice has only
finitely many classes of sms.

H is .2 member of the_trinity (¥, ", ), so that X is a member of the trinity
(X, X', X), where X' (or X)is an sm of L' (or L); X (or X'} is the projection of X
onto E, (or E}). Note, however, that dlm(X) 2dim(X), so that an sL of L, for
example, is a projection of a special plane of L

We have presented a complete classification of the special points of important PQLs
{or Qus) in iwo and ihree dimensions {Niizeki 1989a, b, 1990a). In every pqL, ihe laiiice
points form a class I' of special points with the full symmetry. In some cases, there
exists a class of non-trivial full symmetry points.

An sL of L is classified as type I or Il according to whether it passes a lattice point
of L or not, respectively. A class of type I (or I1) sLs is denoted by a Greek (or Roman)
letter following the convention from band theory (Koster 1957). A representative of a
class of a type Isi passes the Gi'igiu nccorumg.y, it is Simuhaﬁ’c‘\’)um_y' ansiof G
becanse G is embedded in % Therefore, the theory developed in section 3 can be
considered to give classifications of the type I sL of the qrs. A type I class of sL is
denoted by the same symbol as that used for the corresponding sL of G though the
two classes are logically different.

Let X be an sL of L. Then, we can choose a special plane Y of L in such a way
that the axis of the noint eroun Hof X isnot narallelta V. It follows that X A YV = Iy 1

tha CRIEG GALS UL R PULLE BIVUY 12 UL A 15 JIUE PRiGuld U T UV S wiar A i ~0J»

where x; is the crossing point between X and Y. x, is a special point of L; the point
group of x; is equal to (or included in) the centring group generated by H and the
mirror; that is every special line passes a special point. Conversely, let x, be a special
point and assume that its point group K has a polar subgroup H. Then, a line which
passes x; and is parallel to the axis of H is an s.. We can assume that H is a maximal
polar subgroup of K. Then H is the point group of the sL. H as well as K is a subgroup
of G. However, H is not always a maximal polar subgroup of G. Since a polar subgroup
(exactly, its rotational part) of ¥ is simultaneously a polar subgroup of G, ansL of L
is parallel to an sL of G and, consequently, to a lattice direction. A type I sL is nothing
but a high-symmetry lattice line.

This consideration shows that every si is obtained from a special point and its
maximal polar subgroup. Since an sL passing a special point x, is parallel to a lattice
direction, it passes an infinite number of special points, which are translationally
equivalent to x,. Moreover, it is usual that the sL passes special points belonging to
a different class from that of x,. Therefore, sLs obtained from special points belonging
to different classes may be equivalent. The total number of the classes of sLs of a lattice
is usually smaller than that of special points. On the other hand, the number of
translationally inequivalent sis in a class of SLs is given by |G|/ (2[H|), where H is the
point group of the class.

A necessary and sufficient condition for an sL X to pass a special point x, is that
the point group of X is a maximal polar subgroup of the point group of x,. As a
corollary of this proposition, we can assert that an s. must be of type I if its point
group is not a maximal polar subgroup of G. Let x, be a special point of L and assume
that a maximal polar subgroup H of the point group of x, is not a maximal polar
subgroup of G. Then, an s. obtained from x, and H is of type 1I on account of the
corollary. We shall call a type II s. with this property a type 1Ib sL while the one
without this property will be a type Ila sL. Two translationally inequivalent sLs in
every class of type IIb sLs can be parallel. For example, the class ¢ of sis of the Bcc
lattice is of type 1Ib (see Koster 1957).
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Let X be an st which passes a special point x, and is parallel to a lattice direction
1,/L,. Then, the corresponding special plane Xof L passes X, = (x,, x{} and is parallel
to the lattice plane {nlll+n212| n,meZ}

Let H be a maximal polar subgroup of G and assume that G is generated by H
and a mirror of G. Then, an sL whose point group is H passes a special point with
the full symmetry; the point is the crossing point between the si and a special plane
associated with the mirror. Such an st is of type 1 or type IIa; it must pass a non-trivial
full symmetry point \‘N’TFSF; ini the latter case. If al} the maximal polar SUDgl’Ol.lpb of
G have this property, e.g. the case of Yy, (or Oy), every type lla SL passes a NTFSP.

4.2. The dual transformation of sms

We consider the case where L has a NTFsP x,. X, must be translationally equivalent
to —x, or, equivalently, 2x, € I because G has the inversion operation. The dual latticet
to L is defined by L* = x,+ L. The space group is common between L and L™, so that
all the sMs are also common between them. L is called self-dual because L and L™
are equivalent. Note that L and L” form a black-and-white Bravais lattice (or QL)
{Niizeki 1990b). We do not define ‘the dual lattice’ for a non-self-dual lattice because
it is of no use in this paper.

Let x, be a NTEsP of a self-dual lattice L and X an sm of L. Then, X* = x,+ X is
also an sM with the same (exactly, isomorphic) point group as that of X, The transforma-
tion of X into X* is called the dual transformation (pr); the double pT changes X
into another sM which is translationally equivalent to X. If a class of sms is invariant
against the D, it is self-dual and forms a singlet with respect to the pT. A non-self-dual
class of sMs is a member of a doublet composed of a dual pair. In particular, l" (= L)

and L™ form a doublet. On the contrary, C of P8mm, for example, forms a singlet
{Niizeki 1989a).

A necessary and sufficient condition for a class of type I sis to be self-dual is that
every sL of the class passes a NTFse in L™ or, equivalently, that the class is of type I
also as a class of sis of L™. On the other hand, if one member of a doublet of sLs is
of type I, the other must be of type Ila.

Fromi these t,uumucLauuua, we can concluded thatat iype IlasL of a self-dual lattice
L is obtained by a ot from a type I sL X which is non-self-dual; the dual X™ to X
is parallel to X. All the type Ila sLs of the icosahedral pgLs (or the three cubic Bravais
lattices) are obtained in this way for the reason mentioned at the end of section 4.1,

4.3, Multipler structures of sams with respect to a self-similarity transformation

We have shown previously (Niizeki 1989a,b) that the classes of special points of a
pqL are divided into several multiplets with respect to the self-similarity transformation
(sT) of the PQL; the members of a multiplet are permutated cyclically on the sT. In
particular, I' always forms a singlet. On the other hand, H, P and P’ of F33m or X5, L
and L} of I53m, for example, form a triplet. The classes of sLs are similarly divided
into multiplets with respect to the sT. The point group must be common among the
members of a multiplet because the sT is commutable with 4 (=G * L),

t Note that ‘dual lattice’ is sometimes used in conventional crystallography as the term representing the
reciprocal lattice.
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Since I' is invariant against the sr, a type I {or II) sL is changed by the st into
another type 1 (or II) sL. More precisely, the members of a multiplet of srs must be
all type 1, all type I1a or all type Ilb.

4.4. Compatibility between special points and special lines

An sL belonging to a class C can pass a special point x, belonging to a class C’ if the
point group of C is a maximal polar subgroup of that of C', Then, we shall say that
the class C is compatible with C’. The compatibility relationships must be consistent
with the multiplet structures of sMs with respect to both the sT and the o1 (i) if a
class C of special lines (or points) forms a singlet and a class €’ of special points {or
lines) belonging to a multiplet is compatible with C then, other members of the
multiplet are also compatible with C; and (ii) if different members of a multiplet of
special points are compatible with those of sLs, both the multiplets must be consistent.

5. A classification of sLs icosahedral PQLs

In this section, we suppose that the results of Niizeki (1989b) are well known. The
point groups of the special points of icosahedral ¢Ls are Yy, D,,, D5y and Dsy. Their
maximal polar subgroups are C;,,Cs,, C,;, and C,. The last one, C,, is maximal! in
D;q and D54 but not in Y, and D;y,. Therefore, an sL associated with C; is of type IIb.
It is parallel to =. We list in table 1 the classes of the sLs of the three icosahedral poLs
together with the compatibility relationships between them and the classes of special
points. We later consider the three cases, P53m, F53m and 1533m, separately.

P53m is a self-dual pQL with only one ciass, R, of NTEsps. Of the three lattice
directions A, A and Z of Yy, A and A give self-dual classes of type I sLs. On the other
hand, = does not pass any NTFsP, so that its dual, §, is a class of type lia sLs. X and
S form a doublet. P53m has four classes, Xs, X;, M and M, of special points with
point groups Ds4 or Dy but it has only one class, C, of the type IIb si because this
class is compatible with all the four classes of the special points. C is self-dual.

F33m is a self-dual QL with three classes, H, P and P', of NTEsps. Correspondingly,
F33m has three kinds of DTs. A and A are self-dual as in P53m. F53m has three
classes, S, T and U, of type Ila sLs which are dual to £ with respect to the three prs.
F33m has no type IIb sLs because the point groups of its special points are limited
to Y, and D4, Note that the indices of a special point of M’ are mistaken in Niizeki
(1989b) (a bar on an index should be deleted).

I53m is not self-dual, so that it has no type Ila sus. I53m has six classes,
X;, X, Ly, LS, L, and L3, of special points with point groups D, or Dy,. By a similar
argument as in the case of P53m, we can conclude that 153m has three classes C, D
and E, of type IIb sis as listed in table 1(c). In the table we have exchanged the
symbols L, and L} of the special points in comparison with those adopted in Niizeki
(1989b), so that the consistency between the multiplet structure of the sLs and that of
the special points becomes more symmetrical,

Each of the three classes, A, A and Z, of type I sis of an icosahedral pQL must
form a singlet with respect to the sT. Also, S or C of P33m forms a singlet. S, T and
U of F33m and C, D and E of I33m form triplets, respectively.
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Table 1. The special lines of the three Bravais classes of icosahedral GQiLs and their
compatibility relationships with the classes of special points.

Table 1{a)}, (b) or (¢} refers to P53m, F53m or I53m, respectively. The symbols of
the special points are the same as those in Niizeki (1989b) but the L; and L of /53m
have been exchanged for convenience. The symbol enclosed by parentheses stands for the
point group of the relevant SL. An asterisk in each table represents that the relevant class
of sLs is compatible with that of the special points; an s belonging to the former class
passes a special point to the latter.

An sSL betonging to A (or A) is parallel to a 5(or 3)-fold axis of the icosahedron
constructed with the twelve basis vectors, e, i=1,...,6, of P53m. An SL belonging to
another class is parallel to a 2-fold axis. More precisely, a representative sL in A, A or £
is indexed as [xypyyP], [xxxyyy] or [x0yx0F], respectively, where x, ye R and the index
scheme in Niizeki (1989b) is used. On the other hand, sLs belonging to other classes are
of type 1l and a representative SL in each class is represented as x;+[x0px07), where x;
is an appropriate special point on the SL. x, is listed in the last column in each table,
where the symbol *h” in an index stands for %,

r X, X, X, M, M, M, R %

(a) P33m

A(ij) * * *

A(CBV) * * * *

Z(Cy) * * *

§(Ca,) * * * [0ROORO]

C{C;) * * * * [0h0000]
r H P P M’ M N N’ X

(b) F53m

A(Cs.) « - -

A(Csv) * * * *

E{CZV) * * * *

8(Cyy) * * * * [010000]

T(Cz) * * * * [0RO0RO}

U{Cs,) * * * * [0R00A0]
r X, Xs Ls Ll X, La L X

(c) IS3m

A(CSV) * * * ®

A(Ch) * " % *

E(Clv) * *

c{Cy) * * [¢10000]

D(C,) * * [hhhhhh]

E(C,) * * [ hhhhhh]

The subgroup D, of Y, has three maximal polar subgroups which are isomorphic
to C,,. The three are conjugate to each other in Yy, but not in Dy, . Accordingly, special
points belonging to a single class with point group D, (e.g. X, of P53m) can be
located on an sL (e.g. £ or § of P33m) in different orientations. In this respect, we
remark that the quasi-dispersion relationship of an electron on P33m is displayed
along a X and an S in Niizeki and Akamatsu (1990). .

Prior to closing this section, we should remark that sis of P53m have been classified
by Janssen (1988). The compatibility relationships are, however, not presented.



Special lines of quasilattices: T 1031

6. Classification of sLs of the octagonal, decagonal and dodecagonal FQLs in
two dimensions

Since a mirror subgroup of a 2n point group is always a maximal polar subgroup, an
n-gonal pQr, Pnmm, cannot have any type I1b sis. D, with even n is generated by a
pair of its inequivalent mirrors, so that a type 1I st of Pnmm must pass a NTFSP.
According to Niizeki (1989a), PtOmm and P12mm are not self-dual, so that the two
PQLs have only type I sLs. On the contrary, P8mm is self-dual and has one class, O,
of NTFsps. £ of P8mm is self-dual with respect to the or but A is not. The dual, Y,
to A is the only class of type Ila sLs. The present result is similar to the fact that a 2D
square lattice has one class of type Ila sLs but a 2p triangular lattice has none.

Both A and X form singlets in the case of P8mm or P10mm with respect to the
sT. In contrast, & and Z of P12mm form a doublet because the st of the QL accompanies
a rotation through #/12 (Niizeki 1989a).

We list in table 2 the classes of the sis of the 2p pQLs and their compatibility
relationships with the classes of special pointst. If a special point is compatible with
both A and X it has a point group generated by two mirrors associated with A and X,
where we have assumed that Y in the case of P&mm is merged into A. In contrast, if

Table 2. A similar table to table 1 but for octagonal (a), decagonal (b) and dodecagonal
(¢} QLs in two dimensions.

The symbols of the special points are the same as those in Niizeki {(1989a) but the
symbol C’ has been changed into M. An sL belonging to A or Y is parallel to a basis
vector of the relevant QL but the one to X is parallel to a direction with angle =/ n from
a basis vector with n =8, 10 or 12,

A representative SL in each class of SLs is presented in the last column in each table.
Note that the index scheme in Niizeki (1990a) has been used.

r X (o4 M R & Repres.
(a) P8mm
A * * * % {xy07]
b3 * * * [ yxxy]
Y * * * * [xyhy]
r X C M P P Repres.
(b) P10mm
A * * * * [xyOOy]
b * * 3 * ® ® [Oxypx]
r X C M T T Repres.
(¢} P12mm
A * * * * [yxyO]
z . o . [yoxy]

1 The symbol C’ of a class of special points in Niizeki {1989a) has been replaced by M in this paper. Note
also that bars should be put on the first and last indices of P’ in the table of the special points of P10mm

in Niizeki (1989a).
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a special point is compatible with only A {or X) it has a point group generated by two
mirrors both of which are associated with A (or X}.

7. Special manifolds of a QL

A pqL, L in d-dimensions is a dense set of points in E;. A QL 1is its discrete subset,
Q=Q(¢p, W)={l|le L, I'c ¢+ W}, where I is the conjugate of i, ¢ the phase vecto
in E}, and W the window; W is a symmetrical domain in E}. Q is a member of the
trinity (Q, @', @), where Q is obtained from L by cutting it with the strip, S{¢p, W)=
E;+ (¢ + W) (Katz and Duneau 1986).

Since L is identical to the class [' of special points of L, we consider the lattice
points of Q (= Q(«, W}) to be special points of Q; they form the class I of Q (Niizeki
1989a). In the general case, a class of special points of Q is similarly obtained from
a class X of L; it is natural (but not compulsory) to use the same strip, S(¢, W), for
the cutting procedure. The resulting set of special points is denoted as Qx{¢, W),
which is also a QL with the same point group as that of Q. Qx is of the non-Bravais-type
except for the case in which X is a class of NTFsPs (Niizeki 1989a). In the exceptional
case, Qy is the dual gL to Q and is locally isomorphic to Q; Q@ and Qx form a
black-and-white Bravais QL (Niizeki 1990b).

A special point is usually located on the centre of a local symmetry of Q; the local
symmetry should be consistent with the point group of the special point but is sometimes
broken ‘spontaneously’ (Niizeki 1989a). For example, X, C, M,R or O of the 2p
octagonal QL (P8mm) as presented in figure 1 is located on the centre of a bond, a
rhombus, a square, a thin hexagon or a regular octagon, respectively, where a hexagon
(or an octagon) is formed of two (or four) rhombi and one (or two) square(s}); the
interior structure of a hexagon (or an octagon) breaks the point symmetry D (or Dg)

of R (or O).

Figure 1. The 2D octagonal QL { P&mm) obtained from a simple hypercubic lattice in four
dimensions. The centre of a bond, a rhombus, a square, a thin hexagon or a regular octagon
is a special point of type X, C, M, R or O, respectively, where a hexagon or an octagon is
a composite of rhombi and square(s). The lines show representatives of three classes, 4, z
and Y, of sLs of the QL. We can confirm the compatibility relationships in table 2{a}.
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We consider next the case of sis. sLs of a single class C are also embedded densely
into E, Let Q{¢, W) be a qr derived from L. Then, C(¢, W)=
{X|XeC X'n(¢p+ W)#T} is a ‘discrete’ subset of C in the sense that only a finite
number of sis included in C(¢p, W) can pass a given finite domain in E,.

In the case where C is of type I, an sL in C(¢, W) passes an infinite number of
lattice points of Q(¢p, W) but the one in C — C(¢h, W) passes none; an sL in C(¢, W)
repiesents a lattice line of Q(@, W), It can be shown that the laitice points on an st
X of C(¢p, W) form a 1D QL obtained from a 2p lattice L~ X with the strip S(¢p, W)
X. From these arguments, it is natural to consider C(¢p, W) as a class of sLs of Q(¢p, W)
irrespective of whether C is of type I or 1L

We show, in figure 1, representatives of three classes of sLs of the 2p octagonal QL.
We can confirm the compatibility relationships in table 2(a)}. Note that the s. belonging
to = cuts the rhombi in two ways, which implies that special points belonging to C
are located on the si in two orientations.

8. Discussions

A symmorphic space group is a subgroup of the space group of a Bravais lattice which
represents the translational part of the former group. Therefore, the sis of the former

must be simultaneously those of the latter {but the converse is not always true}. The
remaining task in this case is to determine the point group of each class of sLs; it is a
subgroup of the point group of the relevant class of sLs of the Bravais lattice, This can
be readily implemented.

However, the situation is more complicated in the case of a non-symmorphic space
group. Nevertheless, the classification of its s1s {(more generally, special manifolds) is
reduced to the case of a Bravais lattice because it is a subgroup of the space group of
an appropriate Bravais lattice.

The classification of the sis of a pQL, L, is equivalent to that of the special planes
of L. The latter task is, however, not easier than the former in contrast to the case of

crmorinl nninte (Niizali 10R0a h\ Thrc ic thea reason whv ﬂ'lp nrncﬁnf nlsu:c'ﬁ(‘cltlnn nf-
SpFuiidl PUILIW (AVIILUAS A5 At ¥Yiiy L preotiin Ladssiii

the sts of a pQL is 1mplemented in E,, the real space, but not in E,.

In the present paper, we have concentrated mainly on sis. A similar consideration
applies to the case of special planes. We can conclude that each of the three icosahedral
PQLs has only one class of special planes, which are lattice planes with the mirror
symmetry; every special plane is perpendicular to a 2-fold axis. Every s of type I or
Ila is included in a special plane because its point group includes a mirror but an sL
of type I1bis not. By a similar reason, every special point is located on a special plane.

We have defined in section 7 C{¢h, W), i.e. aclass of sLs of a Q(¢p, W). Let £(p, W)
be the union of all sLs in C(¢, W). Then, it represents a quasiperiodic linear grid in
E,;. In the case of a 3p @L, we can define also a quasiperiodic planer grid from a class
of special planes. These grids are closely related to the structure of the relevant QL.
The details of this subject will be discussed elsewhere.

Let X be an sM of a poL, L, and let £=(x, x’ )eX. Then, the shifted QL, Q=
x+Q(—x', W), has a global point symmetry, whose point group is the same as that
of X; the centre of the symmetry is located at the origin. Note, however, that the point
symmetry of Q is broken spontaneously in the case where S§{(—x', W) is a singular
strip (Niizeki 1989a). If X is a special point, Q has the centre of the global symmetry,
On the other hand, if X is an s, @ has an axial symmetry. In the final case where X
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is a special plane, Q has a mirror symmetry. Therefore, the present investigation
together with those in Niizeki (1989a, b) provides us with a complete list of qLs with
global point symmetries, though limited to the cases of irreducible Qis in two and
three dimensions. In this respect, we should remark that the 2D Penrose tilings with
global point symmetries have been classified by de Bruijn (1981).
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