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Special lines of quasilattices: I. The case of irreducible 
quasilattices in two and three dimensions 
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Depattment of Physics, Tohoku University, Sendai 980, Japan 

Received 6 July 1990 

Abstract. A general theory for special lines i n  quasilattices is developed. Using the theory, 
we classify completely the special lines ofthe three Bravais classes oficosahedral quasilat- 
tices in three dimensions and another three of n-gonal quasilattices in two dimensions, 
where n = 8, 10 and 12. We establish compatibility relationships between the cl as re^ of 
special lines and those of special points for each of the six Bravais classes of quasilattices 

1. Introduction 

In the one-electron theory of a periodic lattice, the energy band E ( k )  is fundamentally 
important. It is usually displayed along high-symmetry directions in the reciprocal 
space (Koster 1957). It is stationary at high-symmetry points. We shall call these 
directions (or points) special lines (or points). They are generally called, together with 
mirror planes, special manifolds. The special manifolds of a periodic lattice in real 
space are called Wyckoff positions and are important in crystallography (Hahn 1987). 

It has also been revealed that the electronic wavefunctions of a quasicrystal have 
rich structures in the reciprocal space, that is we have observed a quasi-dispersion 
relationship, whose change in the reciprocal space is well understood by introducing 
special points (Niizeki and Akamatsu 1990). 

The real space structure of a quasicrystal is described by a quasilattice (QL), which 
is obtained by the cut-and-projection method from a periodic lattice in higher 
dimensions (Katz and Duneau 1986, Janssen 1988). The special points of a QL in 
the real space are useful in the investigation of the local structures of the QL (Niizeki 
1989a). 

In the case of a periodic lattice, special points or lines are located on special 
positions of the Wigner-Seitz cell (or the Brillouin zone in the reciprocal space (Koster 
1957)). Therefore, enumeration of them and determination of their point groups are 
not so difficult. This, however, is not the case for QLS because their special manifolds 
are related to those of a periodic lattice with dimensions higher than three; we cannot 
visualize a higher-dimensional lattice. More precisely, it is not too difficult to determine 
the point group of a given special manifold but without a systematic method it is 
difficult to enumerate them without omission. 

The special points of important QLS in two and three dimensions have been 
completely classified and listed (Niizeki 1989a, b, 1990a); the classification of special 
points in a QL is reduced to that of a higher-dimensional lattice. The situation is more 
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complicated in the case of special lines as will be shown later. The purpose of the 
present paper is to establish a systematic method for enumerating them and to present 
a complete list of them for important QLS in two and three dimensions. 

In section 2, we summarize the properties of irreducible Q L ~  in two and three 
dimensions (see, for example, Janssen 1988). In section 3, the special lines and planes 
of a point group are introduced. We develop, in section 4, a systematic method for 
enumerating special lines of a QL. In sections S and 6, we classify the special lines of 
irreducible QLS in three and two dimensions, respectively. In section 7, we investigate 
the interplay between a special line of a QL and its local structures. The final section, 
section 8, is devoted to discussions. 

2. Irreducible quasilattices in two and three dimensions 

The basis vectors e,, i = 1,. . . , 0, of a QL in d-dimensions are linearly independent 
over Z, where D >  d. Let G be the point group of the QL; G acts on the d-dimensional 
Euclidean space Ed. Then e, E Ed are transformed linearly by any U E  G among them- 
selves with integer coefficients. We consider only the case where €, is irreducible with 
respect to G .  Then D is a multiple of d. The case where D = 2d is important. If we 
restrict our considerations to ZD and 3~ QLS, this condition is satisfied only when 
G=D,(8m) ,  D,,(lOmm) and D,,(lZmm) in two dimensions and G=Y,(SSm) in three 
dimensions. We shall confine our arguments to these cases only, i.e. the octagonal, 
decagonal and dodecagonal QL, in two dimensions and icosahedral ones in three 
dimensions. 

~ n e r e  is oniy one Bravais ciass, h m m ,  of ZD Q L ~  with the n-gonal point symmetry 
for n =8,10 or 12. On the other hand, there are three Bravais classes, PSTm, F53m 
and 1%m, of 30 Q L ~  with icosahedral point symmetry. 

The set of vectors L = {Iiniej 1 n, E Z )  is called a pre-quasilattice ( PQL), which is a 
dense set of point in E,; a QL is a discrete subset of L. L is considered to be an 
additive group (a Z-module). L is left invariant by the action o f G .  

8. More precisely, there exists conjugate basis vectors e / ,  i =  1 , .  . . , 0, such that 
(i) e/ are vectors in another Euclidean space E ;  in d-dimensions. - 
(ii) & = ( e , , e , , ) ~ E ,  ( = € , @ E d , ) ,  i = l ,  . . . ,  D,arethebasisvectorsof  L. 
(iii) The action of 8 onto E ,  is reducible into the action of G onto E,, and that 

of another point group G' onto E ; ,  where G ,  G' and 6 are isomorphic to each other. 
L is the projection of i onto Ed.  L' = {L,n,ejI ni E Z } ,  the conjugate PQL to L, is the 

projection of i onto E ; .  There are one-to-one correspondences among L, L' and L. 
We shall call Ed the real space and E ;  tbe conjugate space. 

Many trinities of the form (T, T', T ) ,  which are associated with the trinity 
( E d ,  E ;  , €,), will appear; T' is the conjugate to T. The case T = G or L has appeared 
in a preceding paragraph. 

M = G * L = {{ull) 1 U E G ,  I E L). $7 is a dense subgroup of the d-dimensional Euclidean 
group in contrast to the ordinary space group. 9 leaves L invariant. G and L is 
embedded in 9; G = ( { u ~ O } / U E G }  (c 9) and L is the maximal Abelian subgroup of 
9. M is a member of the trinity ($7, 9', %); $?(=e * i) is an ordinary space group 
associated with the periodic lattice i. It can be shown generally that every algebraic 

-. 

i G can be iified up io a ij-dimensionai periodic laitice i and its point group 

1 -I in+--Al.r- a I I ~ . - ~ ; L ~ . - . - C S  nrm-n 9 2s 8 semidirect prodnct of G znd L; L C ,  Y 1  ,,.,,"""U- '. yYY".r"pY.,C 6.YYY 
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structure associated with one member of the trinity can be translated into those of the 
other two (Katz and Duneau 1986). 

A POL has a self-similarity; that is there exists an algebraic integer r such that 
TL ( = i d  / E  L ) )  = L (in the case of the dodecagonal PQL in two dimensions; however, 
a rotation through ~ / 1 2  must follow the scaling). The self-similarity gives rise to some 
arbitrariness in  indexing a lattice vector of L (Elser 1985, Ostlund and Wright 1986, 
see a!so Niizeki !?G3a). 

Let / ( = Z , n j e i ) ~  L. Then, the ID subspace D ( / ) = { x / l x ~ R }  is called a lattice 
direction. Since I = r/ ( E  L )  is parallel to I, I defines the same lattice direction as D( I ) .  
More generally, for any lattice direction D, Dn L is a submodule with two basis 
vectors 1, and I , ;  Dn L = { n , I , + n , 1 2 ( n , ,  ~ , E Z )  (Katz and Duneau 1986). This lattice 
direction is denoted by D = D is a- member of the trinity (0, D', E ) ,  where 
D'=  / ; / I ;  is a lattice direction of L' and D is the lattice plane (not a direction) of L 
spanned by i, and i,. 

A line is called a lattice line (more precisely, a quasilattice line) if it passes at least 
two lattice points. In fact, it passes an infinite number of lattice points because it is 
parallel to a lattice direction, which is a special lattice line. 

3. The special manifolds of a point group 

Let H be a non-trivial 3~ point group which fixes the origin of E,. It is then called a 
centring group if the origin is the only fixed point in E,. However, if H is a mirror 
group, e.g. C ,  = 1 E, oh}, the mirror plane is a fixed plane. The remaining case is the 
one in which H is a polar group; in this case, there exists a fixed line, which is nothing 
but the axis of the polar group. There are two series of polar point groups, i.e. C, and 
C,, with n z= 2. 

The fixed line of a polar subgroup of a point group G is called as a special line 
(SL) of G. Two polar subgroups of G can have a common fixed line. Then, they are 

a one-iir-onr 
correspondence between the set of all the S L ~  of G and that of all the maximal polar 
subgroups of G. If two maximal polar subgroups of G are conjugate in G, the 
corresponding two SLS are equivalent. The number of inequivalent S L ~  is equal to the 
number of the maximal polar subgroups which are not conjugate to each other. On 
the other hand, the number of equivalent SLS whose point group H is given by lGl/(2lHl), 
where /*I stands for the order of the group *; the factor 2 in the denominator is due 
to the fact that an S L  is tranformed into itself by the inversion operation. A similar 
conclusion is also derived for the case of special planes of G. 

Let H be a polar subgroup of G and assume that there exists a mirror plane (a 
special plane) of G such that it does not include the axis of H. Then, H and the mirror 
generate a centring subgroup of G. 

L. Let E be a 
maximal polar subgroup of G and X the corresponding SL of G. Then, there exists a 
lattice vector lo€ L such that it is not parallel to X. It follows that / = (U€ H )  is 
a parallel lattice vector to X.  Therefore, every SL of L is parallel to a lattice direction. 

We shall apply the present theory to the three icosahedral Bravais QLS, P??m, F?$m 
and I?fm. The relevant point group Y,(%m) has three inequivalent SLS corresponding 
to its three maximal polar subgroups, C,,, C, ,  and Czv. The three SLS are denoted by 

su'igioups Uf a iiiaAiina; su'igioup of G ,  Aeioi~ing;y, theie 

.., we assume [hat G is i;ie poini gioiip of a giavc,s lattice ;oi a 
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A, A and X, respectively, which agree with the 5-, 3- and 2-fold axes of the icosahedron 
Constructed with twelve basis vectors, * e t ,  i = 1,. . . ,6, of P53m. The three lattice 
directions [ l O O O O O l / [ O l l l l ~ ] ,  [ l l l O O O ] / [ O O O l l l ]  and [looioo]/[ooiooi] of P53m are 
parallel to A, A and E, respectively, where the index scheme in Niizeki (1989b) is used. 

Y, has only one class of equivalent special planes corresponding to the fifteen 
equivalent mirror planes. 

It is an important property of the point group Yh that each of its three inequivalent 
maximal polar subgroups has a companion mirror in Y,,, with which it generates Y,; 
this is easily confirmed for each case of C5,, C, ,  and C2", separately. Oh also has a 
similar property. 

The present consideration also applies to the case of point groups in two dimensions. 
Note, however, that a mirror group in two dimensions is considered to be a polar 

SLS corresponding to two inequivalent mirrors crossing with the angle a J n ;  the two 
mirrors generate D,. The two SLS are denoted by A and X. 

D, is the point group of the ZD n-gonal PQL Pnmm with n = 8,lO or 12. We assume 
that A is parallel to a basis vector of Pnmm. Then, representatives of A and Z are 
indexed as [ l O O O ] / [ O l O ~ ]  and [ l l O O ] / [ O O l ~ l  for n = 8 ,  [lOOOO]/[OlOOl] and 
[ O l O O ~ ] / [ O O l ~ O ]  for n = 10 and [lOOO]/[OZOi] and [ l l O O ] / [ O l l i ]  for n = 12, where the 
index scheme in Niizeki (1990a) is used. 

~..-~-_.--._..._..._.__.__..I_. ernun hecause it i c  related tn an < I  Then ..____, n . ( n m m )  -,,\ .... -..-, with P V P ~  n hac "...-...-_I twun inennivilent 

4. Special lines of B PQL 

The main part of the theory in this section applies to both a periodic Bravais lattice 
and that of a PQL, so that we will not distinguish between the two cases, if unnecessary. 
The theory can be readily understood by frequent reference to the three cubic Bravais 
lattices (Koster 1957). 

4.1. General theory 

We consider the case of a 3~ lattice, L, whose point group is G .  Let % b e  a non-trivial 
subgroup of the space group 9 (= G * L )  of L and assume that it has a fixed point. 
Then X is a point group with respect to the fixed point. The fixed manifold X of % 
is a special manifo!d ( S M )  of L or, more precisely, a special point, line or plane 
depending on whether dim(X) is equal to 0, 1 or 2, respectively. If X is the maximal 
point group among those which are subgroups of 3 and leave X invariant, it is called 
the point group of X .  Let H be the 'rotational part' of X. Then, H is a subgroup of G 
and H = X. We shall spmetimes identify %with H. Then, we will use the latter symbol. 

Let 01 ~ ~ 9 .  Then, X = 5 X  (= { a x  I x E X}) is an equivalent SM of L to 2.'; the point 
group of X is given by %701X01-~, which is conjugate to X in 9. In particular, if 
a = ( E l I )  with l e L ,  then X = I + X  ( = { I + x l x ~ X ) )  is translationally equivalent to 
X and XA is 'translationally equivalent' to %; the rotational part is common between 
X and X. Two equivalent S M ~  usually have different orientations if they are not 
translationally equivalent. In particular, two equivalent special points can have different 
'orientations' because the relevant point groups can be 'translationally inequivalent'. 
The se! of a!! !he eq??iva!en! sMr form a class; the point group of the class is defined 
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by the point group of a representative of the class. We will see that a lattice has only 
finitely many classes of SMS. 

Zf is a member of the trinity (Zf, %", %?), so that X is a member of the trinit): 
(X, X', %), where X' (or 2) is an SM of L' (or i); X (or X ' )  is the projection of X 
onto E, (or E:) .  Note, however, that d i m ( g ) = 2 d i m ( X ) ,  so that an SL of L, for 
example, is a projection of a special plane of i. 

We have presented a complete classification of the special points of important WLS 

(or QLS) in two and ihree dimensions (iuiizeki i984a, b, i990aj. in every PQL, the iaiiice 
points form a class r of special points with the full symmetry. In some cases, there 
exists a class of non-trivial full symmetry points. 

An SL of L is classified as type I or 11 according to whether it passes a lattice point 
of L or not, respectively. A class of type I (or 11) S L ~  is denoted by a Greek (or Roman) 
letter following the convention from band theory (Koster 1957). A representative of a 

because G is embedded in 9. Therefore, the theory developed in section 3 can be 
considered to give classifications of the type I SL of the Q L ~ .  A type I class of SL is 
denoted by the same symbol as that used for the corresponding SL of G though the 
two classes are logically different. 

Let X be an SL of L. Then, we can choose a special plane Y of L in such a way 
h: the axis ofthe poixt group U of X is xo: para!!e! to Y. !? fo!!ows ?h& Y c: !'= I r - l  , . -"I,  

where xo is the crossing point between X and Y.  x, is a special point of L; the point 
group of xu is equal to (or included in) the centring group generated by H and the 
mirror; that is every special line passes a special point. Conversely, let xo be a special 
point and assume that its point group K has a polar subgroup H. Then, a line which 
passes xo and is parallel to the axis of H is an SL. We can assume that H is a maximal 
polar subgoup of K, Then H is the point group of the SL. H as well as K i s  a subgroup 
of G. However, H is not always a maximal polar subgroup of G. Since a polar subgroup 
(exactly, its rotational part) of 9 is simultaneously a polar subgroup of G, an SL of L 
is parallel to an SL of G and, consequently, to a lattice direction. A type I SL is nothing 
but a high-symmetry lattice line. 

This consideration shows that every SL is obtained from a special point and its 
maximal polar subgroup. Since an SL passing a special point xo is parallel to a lattice 
direction, it passes an infinite number of special points, which are translationally 
equivalent to xu. Moreover, it is usual that the SL passes special points belonging to 
a different class from that of x,,. Therefore, SLS obtained from special points belonging 
to different classes may be equivalent. The total number of the classes of SLS of a lattice 
is usually smaller than that of special points. On the other hand, the number of 
translationally inequivalent SLS in a class of SLS is given by lGl/(ZlH[), where H is the 
point group of the class. 

A necessary and sufficient condition for an SL X to pass a special point x, is that 
the point group of X is a maximal polar subgroup of the point group of x,,. As a 
corollary of this proposition, we can assert that an SL must be of type I1 if its point 
group is not a maximal polar subgroup of G. Let x, be a special point of L and assume 
that a maximal polar subgroup H of the point group of x, is not a maximal polar 
subgroup of G. Then, an SL obtained from x, and H is of type I 1  on account of the 
corollary. We shall call a type I 1  SL with this property a type IIb SL while the one 
without this property will be a type IIa SL. Two translationally inequivalent SLS in 
every class of type IIb S L ~  can be parallel. For example, the class Q of SLS of the BCC 

lattice is of type IIb (see Koster 1957). 

of :ypi 1 3i passej :hi opig;ii, Aceor&iig:y., pL is ~,T,Gp,aiiew~spy. ai' ji of c. 
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Let X be an SL which passes a special point x, and is parallel to a lattice direction 
l , / 1 2 .  Then, the corresponding special plane 2 of L passes io = (xo, xh) and is parallel 
to the lattice plane { n , i , + n , i , l n , , n , E Z ) .  

Let H be a maximal polar subgroup of G and assume that G is generated by H 
and a mirror of G .  Then, an SL whose point group is H passes a special point with 
the full symmetry; the point is the crossing point between the SL and a special plane 
associated with the mirror. Such an SL is of type 1 or type Ila; it must pass a non-trivial 

G have this property, e.g. the case of Yh (or Oh), every type IIa SL passes a NTFSP. 

fii;: ryr,Ee;w poiiit jNTFjPj iii the ;.&pi cBje, :fa:; the maxiiiia; poiar subgroups of 

4.2. The dual transformation of SMS 

We consider the case where L has a NTFSP x,,. x, must be translationally equivalent 
to -x,, or, equivalently, 2 x , ~  L because G has the inversion operation. The dual latticet 
to L is defined by L# = x,,+ L. The space group is common between L and L e ,  so that 
all the SMS are also common between them. L is called self-dual because L and L" 
are equivalent. Note that L and L" form a black-and-white Bravais lattice (or PQL) 

(Niizeki 1990h). We do  not define 'the dual lattice' for a non-self-dual lattice because 
it is of no use in this paper. 

i e t  x,, be a NTFSP of a seif-duai iattice i and X an SM of i. inen ,  X? = x,+X is 
also an SM with the same (exactly, isomorphic) point group as that ofX. The transforma- 
tion of X into Xy is called the dual transformation (DT); the double DT changes X 
into another SM which is translationally equivalent to X. If a class of S M ~  is invariant 
against the DT, it is self-dual and forms a singlet with respect to the Dr. A non-self-dual 
class of S M S  is a member of a doublet composed of a dual pair:In particular, r (=  L )  
and P-~~~.. . I L ~ .  n~ _ I ~ -  ..~ iurm a douoier. u n  me connary, C of P8mm, for example, forms a siiigiei 
(Niizeki 1989a). 

A necessary and sufficient condition for a class of type I SLS to be self-dual is that 
every SL of the class passes a NTFSP in L* or, equivalently, that the class is of type I 
also as a class of S L ~  of L". O n  the other hand, if one member of a doublet of SLS is 
of type 1, the other must be of  type Ila. 

E---. A--- ----:A---&:--- .. .^--_ ---- ,..-1--1 .L-. If.i.._ T T -  L_. -r . .  -ni~rl..li I ~ + + : , , ~  

L is obtained by a DT from a type I SL X which is non-self-dual; the dual X" to X 
is parallel to X.  All the type IIa SLS of the icosahedral PQLS (or the three cubic Bravais 
lattices) are obtained in this way for the reason mentioned at the end of section 4.1. 

rlulll LllFJC ~V, ,> ,"~Ld.LIUI ,J ,  w c  -a,, bUI ILLUYG" L l l d l  n Lyyc , L a  J L  U. 'l J c I I - " u n L  I ' I L L l b L  

4.3. .Mti!!@!e? s ! . r ~ ! t i ~ p s  ~f S.MS wi!h r q e c ?  ?D ~1 se!$simi!nri!y tran.$nrmn!inn 

We have shown previously (Niizeki 1989a, b) that the classes of special points of a 
PQL are divided into several multiplets with respect to the self-similarity transformation 
(ST) of the PQL; the members of a multiplet are permutated cyclically on the ST. In 
particular, r always forms a singlet. On the other hand, H, P and P of FSTm or X,, L, 
and L; of 1%m, for example, form a triplet. The classes of SLS are similarly divided 
into muitipiets with respect to the ST. The point group must be common among ihe 
members of a multiplet because the ST is commutable with 9 (= G * L) .  

t Note that 'dual lattice' is sometimes used in conventional crystallography as the term representing the 
reciprocal lattice. 
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Since r is invariant against the ST, a type I (or 11) SL is changed by the ST into 
another type I (or 11) SL. More precisely, the members of a multiplet of SLS must be 
all type I, all type IIa or all type IIb. 

4.4. Compatibility between special points and special lines 

An SL belonging to a class C can pass a special point x, belonging to a class C' if the 
point group of C is a maximal polar subgroup of that of C'. Then, we shall say that 
the class C is compatible with C'. The compatibility relationships must be consistent 
with the multiplet structures of S M ~  with respect to both the ST and the DT: (i) if a 
class C of special lines (or points) forms a singlet and a class C' of special points (or 
lines) belonging to a multiplet is compatible with C then, other members of the 
multiplet are also compatible with C; and (ii) if different members of a multiplet of 
special points are compatible with those of SLS, both the multiplets must be consistent. 

5. A classification of S L ~  icosahedral P Q ~  

In this section, we suppose that the results of Niizeki (1989b) are well known. The 
point groups of the special points of icosahedral are Yh, DZh, D,, and D3,. Their 
maximal polar subgroups are Csv,C3,,C2, and C,. The last one, C,, is maximal in 
D5, and D3,, but not in Yh and DZh. Therefore, an SL associated with C, is of type IIb. 
It is parallel to X. We list in table 1 the classes of the SLS of the three icosahedral PQLS 

together with the compatibility relationships between them and the classes of special 
points. We later consider the three cases, PSTm, F%m and ISTm, separately. 

PS?m is a self-dual PQL with only one class, R, of NTFSP~. Of the three lattice 
directions A, A and E of Yh, A and A give self-dual classes of type I SLS. On the other 
hand, Z does not pass any NTFSP, so that its dual, S, is a class of type Ha SLS. Z and 
S form a doublet. PSfm has four classes, X , ,  XI, M ,  and MI, of special points with 
point groups D,, or D3d but it has only one class, C, of the type IIb SL because this 
class is compatible with all the four classes of the special points. C is self-dual. 

FS5m is a self-dual PQL with three classes, H, P and P', of NTFSPS. Correspondingly, 
FSTm has three kinds of D T ~ .  A and A are self-dual as in P%m. F%m has three 
classes, S, 7 and U, of type Ila SLS which are dual to 2 with respect to the three D T ~ .  

F%m has no type IIb S L ~  because the point groups of its special points are limited 
to Yh and DZh. Note that the indices of a special point of M' are mistaken in Niizeki 
(1989b) (a bar o n  an index should be deleted). 

ISTm is not self-dual, so that it has no type IIa SLS. 15jm has six classes, 
X , ,  X,, L,, L ; ,  L, and L;, of special points with point groups D,, or D,*. By a similar 
argument as in the case of P53m, we can conclude that 153, has three classes C, D 
and E, of type IIb S L ~  as listed in table l ( c ) .  In the table we have exchanged the 
symbols L, and L; of the special points in comparison with those adopted in Niizeki 
(1989b), so that the consistency between the multiplet structure of the SLS and that of 
the special points becomes more symmetrical. 

Each of the three classes, A, A and Z, of type I SLS of an icosahedral PQL must 
form a singlet with respect to the ST. Also, S or C of PSTm forms a singlet. S, T and 
U of F5Tm and C, D and E of 1 5 j m  form triplets, respectively. 
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Table 1. The special lines of the three Bravais classes of icosahedral Q L ~  and their 
compatibility relationships with the classes of special points. 

Table I ( o ) , ( b )  or (c)  refers to P33m. FS3m or 153m. respectively. The symbols o f  
the special points are the same as those in Niizeki (1989b) but the L, and L; of ISfm 
have been exchanged for convenience. The symbol enclosed by parentheses stands for the 
point group of the relevant SL. An asterisk in each table represents that the relevant class 
of SLS is compatible with that of the special points; an SI. belonging to the former class 
passes a special point to the latter. 

An S L  belonging to h (or A)  is parallel to a Sior 3)-fold axis of the icosahedron 
constructed with the twelve basis vectors, l e , ,  i = 1,. . . , 6 ,  of P3jm. An SL belonging to 
another class is parallel to a 2-fold axis. More precisely, a representative SL in A, A or I 
is indexed as [xyyyy j ] ,  [xuyyy] or [xOyxOg],  respectively, where x . y ~ W  and the index 
scheme in Niizeki (1989b) is used. On the other hand, SLS belonging to other classes are 
of type I 1  and a representative S L  in each class is represented as x , + [ x O y x O ~ ] ,  where xo 
is an appropriate special point on the SL. xo is listed in the last column i n  each table, 
where the symbol 'h' in an index stands fori. 

( a )  PSfm 
A(C,,) * 
A i C d  * * 
I(C*") * * 
S(C2"I * * [OhOOhO] 
CiCJ * * * [OhOOOO] 

r H P P'  M' M N N' X" 

The subgroup D2h of Yh has three maximal polar subgroups which are isomorphic 
to CZv. The three are conjugate to each other in Yh but not in D2h. Accordingly, special 
points belonging to a single class with point group DZh (e.g. X 2  of P 3 h )  can be 
located on an SL (e.g. or S of P3Tm) in different orientations. In  this respect, we 
remark that the quasi-dispersion relationship of an electron on P33m is displayed 
along a X and an S in Niizeki and Akamatsu (1990). 

Prior to closing this section, we should remark that SLS of PsTm have been classified 
by Janssen (1988). The compatibility relationships are, however, not presented. 
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6. Classification of SLS of the octagonal, decagonal and dodecagonal PQLS in 
two dimensions 

Since a mirror subgroup of a 20 point group is always a maximal polar subgroup, an 
n-gonal PQL, Pnmm, cannot have any type Ilb SLS. D, with even n is generated by a 
pair of its inequivalent mirrors, so that a type I 1  S L  of Pnmm must pass a NTFSP. 

According to Niizeki (1989a), PlOmm and P12mm are not self-dual, so that the two 
PQLS have only type I SLS. On the contrary, P8mm is self-dual and has one class, 0, 
of NTFSPS. X of P8mm is self-dual with respect to the DT but A is not. The dual, Y, 
to A is the only class of type IIa S L ~ .  The present result is similar to the fact that a ZD 
square lattice has one class of type I la  SLS but a 20 triangular lattice has none. 

Both A and X form singlets in the case of P8mm or PlOmm with respect to the 
ST. In contrast, A and I: of Pl2mm form a doublet because the ST ofthe PQL accompanies 
a rotation through 71/12 (Niizeki 1989a). 

We list in table 2 the classes of the SLS of the 2~ PQLS and their compatibility 
relationships with the classes of special pointst. If a special point is compatible with 
both A and I: it has a point group generated by two mirrors associated with A and I:, 
where we have assumed that Y in the case of P8mm is merged into A. In contrast, if 

Table 2. A similar table to table 1 but far octagonal ( a ) ,  decagonal ( b )  and dodecagonal 
(c )  QLS in two dimensions. 

The symbols of the special points are the same as those in Niizeki (1989a) but the 
symbol C’ has been changed into M ,  An S L  belonging to A or Y is parallel to a basis 
vector of the relevant QL but the one to X is parallel to a direction with angle r / n  from 
a basis vector with n = 8, 10 or 12. 

A representative S L  in each class of S L ~  is presented in the last column in each table. 
Note that the index scheme i n  Niizeki (l990a) has been used. 

r X c M R  0 Repres. 

r X C M P  P Repres. 

( b )  PlOmm 
A * [XYOOYl 
z * [OXYWI 

r X C M T  7- Repres. 

( e )  P12mm 
A [YXYOI 
1 [YXXYl 

* 

___ 
t The symbol C’ o f a  class of special paints in Niizeki (1989a) has been replaced by M in this paper. Note 
also that bars should be put on the first and last indices of P i n  the table of the special paints of PlOmm 
i n  Niizeki (1989a). 
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a special point is compatible with only A (or 1) it has a point group generated by two 
mirrors both of which are associated with A (or 2). 

7. Special manifolds of a QL 

,4 PQL, L, in &dimensions is p dense se! of nnintc in E,, ,A. QL is its discrete subset, 
Q-Q(q5, W)={IIl~L,l'~++WJ,whereI'istheconjugate of[, Q thephasevector 
in E &  and W the window; W is a symmetrical domain in E ; .  Q is a member of the 
trinity (Q, Q', o), where 0 is obtained from i by cutting it with the strip, S ( + ,  W) = 
E,, + (q5 + W) (Katz and Duneau 1986). 

Since L is identical to the class r of special points of L, we consider the lattice 

1989a). In the general case, a class of special points of Q is similarly obtained from 
a class X of L; it is natural (but not compulsory) to use the same strip, S(+, Wj, for 
the cutting procedure. The resulting set of special points is denoted as Qx(q5, W), 
which is also a QL with the same point group as that of Q. Qx is of the non-Bravais-type 
except for the case in which X is a class of NTFSPS (Niizeki 1989a). In the exceptional 
case, Qx is the dual QL to Q and is locally isomorphic to Q; Q and Qx form a 
black-and-white Bravais QL (Niizeki 1990b). 

A special point is usually located on the centre of a local symmetry of Q; !he local 
symmetry should be consistent with the point group of the special point but is sometimes 
broken 'spontaneously' (Niizeki 1989a). For example, X, C, M, R or 0 of the 2~ 

octagonal QL ( P 8 m m )  as presented in figure 1 is located on the centre of a bond, a 
rhombus, a square, a thin hexagon or a regular octagon, respectively, where a hexagon 
(or an octagon) is formed of two (or four) rhombi and one (or two) square(s); the 
interior structure of a hexagon (or an octagon) breaks the point symmetry D2 (or D8) 
of R (or 0). 

p i n t s  of Q (= Q(4; W ) )  to he special points of Q; they form the class r of Q (Niizeki 

Figure 1. The ZD octagonal QL ( P l m m )  obtained from a simple hypercubic laltice in four 
dimensions. The centre of a band, a rhombus. a square, a thin hexagon or a regular octagon 
is a special point of type X, C, M, R or 0, respectively. where a hexagon or an octagon is 
a composite of rhombi and square(s). The lines show representatives of three classes, A. I 
and Y, of SLS of the QL. We can confirm the compatibility relationships in table Z(0 ) .  
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We consider next the case of SLS. SLS of a single class C are also embedded densely 
into Ed. Let Q(4 ,  W) be a Q L  derived from L. Then, C(4, W ) =  
(XI X E C, X'n (4 + W )  f 0} is a 'discrete' subset of C in the sense that only a finite 
number of SLS included in C ( 4 ,  W) can pass a given finite domain in Ed. 

In the case where C is of type I ,  an SL i n  C(4, W j  passes an infinite number of 
lattice points of Q(4, W) but the one in C - C(4,  Wj passes none; an SL in C(4, W) 
L q J r G > G . l r J  a 16111LG l l l l C  U1 c./,cp, "I ,. I,  call oe >IIuwn L l l t l L  L,lC lalllEr yurrrrs "I1 Cl.11 JL 

X of C(4, W) form a I D  Q L  obtained from a zu lattice i n  2 with the strip S(4, W) n 
X. From these arguments, it is natural to consider C(4,  W) as a class of sLS  of Q ( 4 ,  W) 
irrespective of whether C is of type I or 11. 

We show, in figure 1, representatives of three classes of SL$ of the 2~ octagonal QL. 

We can confirm the compatibility relationships in table 2(a). Note that the S L  belonging 
to Z cuts the rhombi in two ways, which implies that special points belonging to C 
are located on the SL in two orientations. 

------ ,...*" ~ I^*.:^^ ,:-,. ..e A, ,I. ,I,, T. - ~ -  L. .L .LAL .L. Î ..:̂ . ..-:... ._ -- ". 

8. Discussions 

A I..- en-!-:,- C I ~ ~ P  _--.a- I r..hnrn..- nF+!-- "-"" ~ --A..- -Fn D _".." :r ..ih:rh n "Jl.""",p"1LC "YLLLC 6l""p 10 P """~1""p "1 Ulr " p a L C  g1""p "1 '7 "I',"',,O I P L l l L L  wlllrl l  

represents the translational part of the former group. Therefore, the SLS of the former 
must be simultaneously those of the latter (but the converse is not always true). The 
remaining task in this case is to determine the point group of each class of SLS; it is a 
subgroup of the point group of the relevant class of S L ~  of the Bravais lattice. This can 
be readily implemented. 

However, the situation is more complicated in the case of a non-symmorphic space 
group. Nevertheless, the classification of its SL$ (more generally, special manifolds) is 
reduced to the case of a Bravais lattice because it is a subgroup of the space group of 
an appropriate Bravais lattice. 

The classification of the SLS of a PQL, L, is equivalent to that of the special planes 
of i. The latter task is, however, not easier than the former in contrast to the case of 
special poi-t: (Niizek !%?!?a, k). This is !he :ea:an why the present c!assifica:inn ef 
the S L ~  of  a PQL is implemented in Ed, the real space, but not in ED.  

In the present paper, we have concentrated mainly on S L ~ .  A similar consideration 
applies to the case of special planes. We can conclude that each ofthe three icosahedral 
P Q L ~  has only one class of special planes, which are lattice planes with the mirror 
symmetry; every special plane is perpendicular to a 2-fold axis. Every S L  of type I or 
IIa is included in a special plane because its point group includes a mirror but an S L  

of type I l b  is not. By a similar reason, every special point is located on a special plane. 
We have defined in section 7 C(4,  W ) ,  i.e. a class of SLS of a Q(4,  W). Let Z(4, W )  

be the union of all S L ~  in C(4,  W). Then, it represents a quasiperiodic linear grid in 
E.,. In the case of a 3~ QL, we can define also a quasiperiodic planer grid from a class 
of special planes. These grids are closely related to the structure of the relevant QL. 

Let X be an SM of a PQL, L, and let .t = (1. x') E 2. Then, the shifted QL, Q= 
x+Q(-x', W ) ,  has a global point symmetry, whose point group is the same as that 
of X; the centre of the symmetry is located at  the origin. Note, however, that the point 
symmetry of Q is broken spontaneously in the case where S(-x', W) is a singular 
strip (Niizeki 1989a). If X is a special point, Q has the centre of the global symmetry. 
On the other hand, if X is an SL, Q has an axial symmetry. In the final case where X 

The d+!s of !his subject xi!! he discussed p!gpwherp 
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is a special plane, Q has a mirror symmetry. Therefore, the present investigation 
together with those in Niizeki (1989a, b) provides us with a complete list of QL$ with 
global point Symmetries, though limited to the cases of irreducible QL$ in two and 
three dimensions. In this respect, we should remark that the ZD Penrose tilings with 
global point symmetries have been classified by de Bruijn (1981). 
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